Model Configuration =================== Configuring an NLP model source can be done by specifying a mapping in the RIME JSON configuration file, under the `model_info` argument. Models can be defined via a custom `model.py` file or through a native integration with [Hugging Face](https://huggingface.co/models). ### Template ```python { "model_info": { "path": "/path/to/model.py" (REQUIRED) } ... } ``` ### Arguments - **`path`**: string, ***required*** Path to Python model file. For instructions on how to create this Python model file, please see [Specify a Model](specify_model_nlp.md). ### Hugging Face Classification Model ```python { "model_info": { "type": "huggingface_classification", (REQUIRED) "model_uri": "path", (REQUIRED) "tokenizer_uri": null, "model_max_length": null, }, ... } ``` ### Arguments - **`model_uri`**: string, ***required*** The pretrained model name or path used to load a pretrained Hugging Face model from disk or from the model hub. - **`tokenizer_uri`**: string or null, *default* = `null` The pretrained tokenizer name or path used to load a the tokenizer from disk or from the model hub. If `null`, RIME defaults to loading from the provided `model_uri`. - **`model_max_length`**: int or null, *default* = `null` The maximum sequence length (in tokens) supported by the model. If `null`, RIME infers the maximum length from the pretrained model and tokenizer.