# Hugging Face RIME now supports an API that downloads Hugging Face models by providing the Hugging Face Model's URI. Currently, RIME supports Hugging Face NLP Classification Models. ### Hugging Face Classification Model ```python { "model_info": { # In order to specify a Hugging Face classification model you need to specify a `model_info` with `"type": "huggingface_classification"` "type": "huggingface_classification", (REQUIRED) # Specify the Hugging Face Model's URI. "model_uri": "path", (REQUIRED) "tokenizer_uri": null, "model_max_length": null, "class_map": null, "ignore_class_names": False }, ... } ``` ### Arguments - **`model_uri`**: string, ***required*** The pretrained model name or path used to load a pretrained Hugging Face model from disk or from the model hub. - **`tokenizer_uri`**: string or null, *default* = `null` The pretrained tokenizer name or path used to load the tokenizer from disk or from the model hub. If `null`, RIME defaults to loading from the provided `model_uri`. - **`model_max_length`**: int or null, *default* = `null` The maximum sequence length (in tokens) supported by the model. If `null`, RIME infers the maximum length from the pretrained model and tokenizer. - **`class_map`**: List[int] or null, *default* = `null` If provided, RIME reorders the model's predicted class probabilities. For example, suppose your dataseet has labels [0, 1] meaning ["Negative", "Positive"] respectively, but the model outputs probabilities for classes ["Positive", "Negative"]. Providing`"class_map": [1, 0]` would make the model compatible with the dataset. Default to the natural order of model logits. - **`ignore_class_names`** If `True`, ignore the label names provided in the Huggingface model's `label2id` configuration. Otherwise, use the configured label names as the `class_names` within RIME and verify they match any provided manually or through the provided dataset.