Creating a New Stress Test
This procedure presumes a model.py file is already registered to the
Robust Intelligence platform and that all commands are issued in a
Python environment.
- If a suitable project does not already exist, create a project using the create_project command in the SDK. - project = rime_client.create_project( name="project", description="$DESC", model_task='MODEL_TASK_BINARY_CLASSIFICATION' ) - You can also access an existing project using its project ID: - project = rime_client.get_project(MY_PROJECT_ID) - Replace - $DESCwith a description of the project or modeling TASK_NATURAL_LANGUAGE_INFERENCE- MODEL_TASK_FILL_MASK 
 
- Register a reference dataset. - This example registers a dataset from a file. - reference_id = project.register_dataset( name=DATASET_NAME, data_params={ "connection_info": {"data_file": {"path": FILE_PATH}}, "data_params": {"label_col": LABEL_COL}, }, integration_id=INTEGRATION_ID, ) - The SDK returns the ID of the reference dataset. - Note that it is best to register a dataset once and then re-use its dataset ID (called - reference_idin this example) afterwards. The SDK commands- project.has_datasetand- project.get_datasetcan be used to retrieve the dataset ID associated with a particular name.
- Register an evaluation dataset. - evaluation_id = project.register_dataset( name=DATASET_NAME, data_params={ "connection_info": {"data_file": {"path": FILE_PATH}}, "data_params": {"label_col": LABEL_COL}, }, integration_id=INTEGRATION_ID, ) - The SDK returns the ID of the evaluation dataset. 
- Register a model. - This example registers a model from a - model.pyfile. The Specify a Model section has details on how to format- model.pyfiles.- model_id = project.register_model_from_path( name=MODEL_NAME, remote_path=S3_PATH_TO_MODEL_PY ) - This example registers a Hugging Face model. - model_id = project.register_model( name=MODEL_NAME, model_config={ "hugging_face": { "model_uri": URI, "kwargs": { "tokenizer_uri": TOKENIZER_URI, "class_map": MAP, "ignore_class_names": True, }, } }, ) - The SDK returns the model ID. 
- Create a test_run_config that uses the registered reference and evaluation datasets and the model, specifying a name and model task in addition to the IDs of the datasets and model registered earlier in this procedure. - config = { "data_info": {"ref_dataset_id": reference_id, "eval_dataset_id": evaluation_id}, "model_id": model_id, "run_name": "My Stress Test Run", } - You can also specify predictions in the test run configuration. 
- Issue the following command to start the stress test, specifying the test_run_config you created in the previous step and the unique ID of the project that contains the stress test. - job = client.start_stress_test( test_run_config=config, project_id=project.project_id ) 
Once the stress test has completed, you can query test run results to programmatically access the results of the stress test.
