Configuring Data Profiling
Robust Intelligence performs profiling of data in order to inform how its tests run. This involves inferring feature types, computing feature relationships, and restricting feature counts. Robust Intelligence uses safe default values and flags exceptions for each parameter, so all these parameters are optional.
Template
Specify this configuration in the AI Stress Testing Configuration JSON file, under the "data_profiling"
parameter of the "profiling_config"
dictionary.
{
#...,
"data_profiling": {
"num_quantiles": 1001,
"num_subsets": 10,
"column_type_info": {
"min_nunique_for_numeric": 10,
"numeric_violation_threshold": 0.01,
"categorical_violation_threshold": 0.05,
"min_unique_prop": 0.99,
"allow_float_unique": False,
"numeric_range_inference_threshold": 1.0,
"unseen_values_allowed_criteria": 0.25,
},
"feature_relationship_info": {
"num_feats_to_profile": 100,
"compute_feature_relationships": True,
"compute_numeric_feature_relationships": False,
"ignore_nan_for_feature_relationships": True,
},
}
}
Arguments
num_quantiles
: int, default = 1001The number of quantiles to store for numerical columns.
num_subsets
: int, default =column_type_info
:min_nunique_for_numeric
: int, default = 10Minimum number of unique values in column for it to be considered a numeric column, otherwise the column is considered categorical.
numeric_violation_threshold
: float, default = 0.01,Maximum fraction of violations when assigning numeric columns (not including missing values).
categorical_violation_threshold
: float, default = 0.05,Maximum fraction of violations when assigning categorical subtypes (not including missing values).
min_unique_prop
: float, default = 0.99If data has at least min_unique_prop proportion of unique values then classify as a column that must have unique values.
allow_float_unique
: bool, default = FalseAllow float columns to be inferred as unique.
numeric_range_inference_threshold
:unseen_values_allowed_criteria
:
feature_relationship_info
:num_feats_to_profile
: int ornull
, default =null
Number of features to profile for smart feature sampling.
compute_feature_relationships
: bool, default = TrueWhether to compute feature relationships.
compute_numeric_feature_relationships
: bool, default = FalseWhether to compute feature relationships for discretized numeric columns.
ignore_nan_for_feature_relationships
: bool, default = TrueWhether to ignore nan when computing feature relationships.
class_name
: List[str] ornull
, default =null
Optional list of label class names (in label order). For classification tasks only.